Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density.

نویسنده

  • Phil Attard
چکیده

The phase space probability density for steady heat flow is given. This generalizes the Boltzmann distribution to a nonequilibrium system. The expression includes the nonequilibrium partition function, which is a generating function for statistical averages and which can be related to a nonequilibrium free energy. The probability density is shown to give the Green-Kubo formula in the linear regime. A Monte Carlo algorithm is developed based upon a Metropolis sampling of the probability distribution using an umbrella weight. The nonequilibrium simulation scheme is shown to be much more efficient for the thermal conductivity of a Lennard-Jones fluid than the Green-Kubo equilibrium fluctuation method. The theory for heat flow is generalized to give the generic nonequilibrium probability densities for hydrodynamic transport, for time-dependent mechanical work, and for nonequilibrium quantum statistical mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mechanical theory for steady state systems. VII. Nonlinear theory.

The second entropy theory for nonequilibrium thermodynamics is extended to the nonlinear regime and to systems of mixed parity (even and odd functions of molecular velocities). The steady state phase space probability density is given for systems of mixed parity. The nonlinear transport matrix is obtained and it is shown to yield the analog of the linear Onsager-Casimir reciprocal relations. It...

متن کامل

Statistical mechanical theory for steady state systems. IV. Transition probability and simulation algorithm demonstrated for heat flow.

Two microscopic transition theorems are given for the probability of nonequilibrium work performed on a subsystem of a thermal reservoir along the trajectory in phase space of the subsystem. The resultant transition probability is applied to the case of heat flow down an applied temperature gradient. A combined molecular dynamics and Monte Carlo algorithm is given for such a nonequilibrium stea...

متن کامل

Statistical mechanical theory for the structure of steady state systems: application to a Lennard-Jones fluid with applied temperature gradient.

The constrained entropy and probability distribution are given for the structure that develops in response to an applied thermodynamic gradient, as occurs in driven steady state systems. The theory is linear but is applicable to gradients with arbitrary spatial variation. The phase space probability distribution is also given, and it is surprisingly simple with a straightforward physical interp...

متن کامل

Nonequilibrium Monte Carlo simulation for a driven Brownian particle.

The author's nonequilibrium probability distribution is tested for time-varying mechanical work. Nonequilibrium Monte Carlo (NEMC) is used to simulate a Brownian particle in a soft-sphere solvent, driven by a moving external potential. Results are obtained for the phase lag and amplitude for drive frequencies ranging from the steady state to the transient regime. This now extends the applicatio...

متن کامل

Experimental study of the fluctuation theorem in a nonequilibrium steady state.

The fluctuation theorem (FT) quantifies the probability of second law violations in small systems over short time scales. While this theorem has been experimentally demonstrated for systems that are perturbed from an initial equilibrium state, there are a number of studies suggesting that the theorem applies asymptotically in the long time limit to systems in a nonequilibrium steady state. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 124 22  شماره 

صفحات  -

تاریخ انتشار 2006